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Abstract

The dispersive and dissipative properties of hp version discontinuous Galerkin finite element approximation are

studied in three different limits. For the small wave-number limit hk ! 0, we show the discontinuous Galerkin gives

a higher order of accuracy than the standard Galerkin procedure, thereby confirming the conjectures of Hu and Atkins

[J. Comput. Phys. 182 (2) (2002) 516]. If the mesh is fixed and the order p is increased, it is shown that the dissipation

and dispersion errors decay at a super-exponential rate when the order p is much larger than hk. Finally, if the order is
chosen so that 2p þ 1 � jhk for some fixed constant j > 1, then it is shown that an exponential rate of decay is

obtained.
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1. Introduction

The numerical propagation of waves poses a significant challenge in scientific computation. Many

alternative approaches have been explored in the quest for a stable method that can efficiently resolve the

wave without excessive dissipation or dispersion, particularly in the context of high frequency applications.

Some of the more promising domain based approaches involve the use of higher order schemes including

spectral element methods [8,10], higher order standard Galerkin finite element methods [3,17,25] and, more

recently, higher order discontinuous Galerkin finite element methods [2,4–6,12,13,27].
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The study of the dispersive and dissipative properties of a method provides insight into the ability of a

method to accurately propagate a wave. Indeed, the order of accuracy of the discrete dispersion relation is

often used as a basis for ranking different methods.
Higher order standard Galerkin finite element schemes for the Helmholtz equation in one space

dimension were studied by Thompson and Pinsky [25] and Ihlenburg and Babu�ska [17,18]. Recently [1],

sharp estimates were obtained for the dispersive behaviour of higher order elements for the Helmholtz

equation in multi-dimensions using tensor product elements.

The dispersive properties of higher order discontinuous Galerkin finite element methods have been

studied in [14–16,23]. In particular, Hu and Atkins [14] examine the dispersion properties of the ap-

proximation of the scalar advection equation in one dimension in the limit hk ! 0, for methods of order

up to 16 using a computer algebra approach. On the basis of the computations, it was conjectured that
the discrete wave-numbers are related to certain Pad�e approximants and that the dispersion relation

for an N th order method is accurate to order 2N þ 3 in hk for the dispersion error and order 2N þ 2 for

the dissipation error. These orders of accuracy exceed those for the standard Galerkin finite element

procedure [25].

The present work is concerned with the analysis of the dispersive behaviour of high order discontinuous

Galerkin finite element methods. One by-product is a proof of correctness of the conjectures of Hu and

Atkins (see Theorem 2). Moreover, Theorem 2 gives the coefficient of the leading terms in the error which,

in view of the fact that in practical computations hk is finite, may be viewed as being of at least as much
practical relevance as the order of decay. It is found that the leading coefficient decreases rapidly with

increasing order N suggesting it may be advantageous to increase the order N whilst maintaining a fixed

mesh.

This idea is pursued in Theorem 3 where it is shown that as the order N is increased, the dissipation and

dispersion errors pass through three different phases depending on the size of N relative to hk. In

the unresolved regime where 2N þ 1 < hk � oðhkÞ1=3, the error oscillates without decay as the order is in-

creased. At the opposite extreme, if the order is large, specifically 2N þ 1 > hk þ oðhkÞ1=3, then the error

reduces at a super-exponential rate. The error decreases at an algebraic rate OðN�1=3Þ in the transition zone
between these extremes.

The super-exponential rate of convergence in the resolved regime, where 2N þ 1 > hk þ oðhkÞ1=3, means

that it is unnecessary to increase the order N much beyond this threshold. Instead, a practical alternative

consists of tracking the envelope where the super-exponential phase begins by choosing the order of

approximation so that 2N þ 1 � jhk for some fixed constant j > 1. In Theorem 4, we prove that this

approach results in an exponential accurate discrete dispersion relation.

It is illuminating to compare these results with those for the continuous Galerkin finite element method

analysed in [1]. The nature and the analysis of the discrete dispersion relation is quite different in the present
situation, and this is reflected by the fact that the discontinuous Galerkin method has a higher order of

accuracy in the limit hk ! 0. On the other hand, in the limit as N ! 1, the threshold where the method

resolves the wave is identical to that for the continuous Galerkin method despite the fact that the argument

is completely different. This means that the better dispersive behaviour of the discontinuous Galerkin

method in the limit hk ! 0 fails to carry through to the limit N ! 1.

The remainder of this paper is organised as follows. We begin by describing the model problem

and the details of the discontinuous Galerkin discretisation, and then give a detailed description of

the theoretical results along with supporting numerical evidence. Section 3 is devoted to the study of the
errors in certain types of Pad�e approximants of the exponential with particular attention to the situation

where the order of the approximant is comparable to the argument, and where both are large. The link

between the dispersive behaviour and the Pad�e approximants is established in the following section

where we study a certain eigenvalue problem. We conclude with the proofs of the results stated in

Section 2.
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2. Description of DGFEM and its dispersive properties

2.1. Model problem

Consider the linear advection equation in Rd , d 2 N,

ut þ a � gradu ¼ 0 ð1Þ

subject to appropriate initial conditions. The advective field a 2 Rd is assumed constant and we orient our

Cartesian coordinate system so that a has non-negative components. It is well-known that this equation

admits non-trivial solutions of the form

uðx; tÞ ¼ ceiðk�x�xtÞ; ð2Þ

where x is a prescribed frequency and k 2 Rd is the corresponding wave-vector. Inserting this expression

into Eq. (1) and simplifying shows that the equation admits a non-trivial solution provided that x and k
satisfy the dispersion relation

x ¼ a � k: ð3Þ

Obviously, the sinusoidal solution u is also a Bloch-wave [20]: i.e. for all hm 2 Rd and s 2 R,

uðxþ hm; t þ sÞ ¼ eiðhk�m�xsÞuðx; tÞ; 8x 2 Rd ; t 2 R: ð4Þ

One repercussion of discretisation of the continuous problem is that the numerical scheme usually admits a

non-trivial Bloch-wave satisfying condition (4) where, however, the exact wave-vector k is replaced by a
discrete wave-vector ~k. The discrete wave-vector ~k provides valuable information on the ability of a nu-

merical scheme to propagate wave-like solutions. For instance, if the real part of the component of ~k in

some direction differs from the corresponding component of k, then the numerical approximation will

exhibit a phase-lag or phase-lead compared with the true solution. Likewise, dissipative and instability

effects arise when ~k has imaginary components.

2.2. Discontinuous Galerkin discretisation

The discontinuous Galerkin finite element discretisation (DGFEM) of (1) is constructed on a parti-

tioning of the computational domain into non-overlapping elements. Although rather general partitions

may be employed for DGFEM, our chief interest here lies in investigating the ability of the numerical

scheme to propagate waves through regions of free space remote from domain boundaries, where one
would generally use a highly structured mesh. For this reason we shall confine our attention to uniform

partitions of Rd consisting of square, or cubic, elements of size h > 0, whose sides are aligned with the

coordinate axes and whose nodes are located at the points hZd .

For N 2 N, let PN denote the usual space of polynomials in one variable of degree at most N . An N th

order DGFEM seeks an approximate solution uDG whose restriction to each element K belongs to the

tensor product space Pd
N , but does not require the approximation to be continuous at element interfaces.

Instead, continuity is enforced in a weak sense between neighbouring elements K and K 0 through the use of

a numerical flux function ~rc defined on the interface oK \ oK 0. The true flux on the interface in the direction
of the unit normal n to the interface is given by

rðn; uÞ ¼ n � au:

The numerical flux ~rcðnK ; uDGÞ from element K to element K 0 in the direction of the unit outward normal nK
is defined, for given c 2 R, by the rule
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~rcðnK ; uDGÞ ¼ Kþ
c ðnKÞuDGK þ K�

c ðnKÞuDGK 0 on oK \ oK 0;

where K�
c is defined by

K�
c ðnÞ ¼ 1

2
n � að � cjn � ajÞ:

The quantity c is often referred to as an upwinding parameter. The function K�
c satisfies two important

properties:

Kþ
c ðnÞ þ K�

c ðnÞ ¼ n � a ð5Þ

and

K�
c ð�nÞ ¼ �K�

c ðnÞ: ð6Þ

The former property ensures that ~rcðn; uÞ ¼ rðn; uÞ for all c, while the latter property implies that the flux
from element K 0 to K balances out the flux in the opposite direction from element K to K 0:

~rcðnK ; uDGÞ ¼ �~rcðnK 0 ; uDGÞ on oK \ oK 0:

The preparations are now complete for the definition of the DGFEM. Using Eq. (1), we find that the true

solution u satisfies

0 ¼
Z
K
vut �

Z
K
ua � gradvþ

Z
oK

vrðnK ; uÞ

for all sufficiently smooth test functions v. The DGFEM approximation is defined on the basis of this

relation by replacing the true flux with the numerical flux, and then requiring that for every element K:
uDGK 2 Pd

N

0 ¼
Z
K
vuDGK;t �

Z
K
uDGK a � gradvþ

Z
oK

v~rcðnK ; uDGÞ 8v 2 Pd
N : ð7Þ

For present purposes, it is more convenient to work with the equivalent statement

0 ¼
Z
K
v uDGK;t
�

þ a � graduDGK
�
þ
Z
oK

vK�
c ðnKÞðuDGK 0 � uDGK Þ 8v 2 Pd

N ; ð8Þ

which is obtained from (7) by integrating by parts and using property (5) to simplify the resulting con-

tributions from the boundary terms.

2.3. Dispersive behaviour of DGFEM

We turn now to our study of the dispersive behaviour of DGFEM. The next result describes the

properties of the discrete wave-vector for the DGFEM:

Theorem 1. For h > 0 and N 2 N, consider the N th order DGFEM on a grid hZd used in conjunction with the

numerical flux function ~rc. If x 2 R and k 2 Rd satisfy the continuous dispersion relation x ¼ a � k, then there

exists a corresponding discrete Bloch-wave solution uDG satisfying (7) and, for all m 2 Zd and s 2 R,

uDGðxþ hm; t þ sÞ ¼ eiðh
~k�m�xsÞuDGðx; tÞ; 8x 2 Rd ; t 2 R: ð9Þ

Moreover, each component ~k‘ of the discrete wave-vector ~k may take one of two possible values corresponding

to either a physical mode, eih
~k‘ � eihk‘ , or a spurious mode
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eih
~k‘ � ð�1ÞNþ1 1þ c

1� c
H �

N

HN
e�ihk‘ ; c 6¼ 1; ð10Þ

where HN ¼ 1F1ð�N ;�2N � 1;�ihk‘Þ (see (20)) and � denotes complex conjugation. The relative error qN is

the same in both cases,

qN ¼ ð1� cÞHN e
ihk‘EN þ ð�1ÞNþ1ð1þ cÞH �

N e
�ihk‘E�

N

ð1� cÞHN eihk‘ þ ð�1ÞN ð1þ cÞH �
N e

�ihk‘
þ OðjEN j2Þ; ð11Þ

where EN is the relative error in the ½N þ 1=N �-Pad�e approximant to eihk‘ .

The proofs of this and the remaining results stated in this section are deferred to Section 5. Theorem 1

gives a complete description of the discrete wave-vector in terms of the quantity qN . In turn, qN is related to

the relative error in certain Pad�e approximants to the exponential, which we shall study in detail in Section

3. The dependence on the upwind parameter c is given explicitly provided c 6¼ 1. In the event that c is

chosen to be unity, then the spurious mode (10) will be absent.

2.4. Small wave number hk � 1

Suppose that k 2 Rd satisfies the dispersion relation (3) for the continuous problem. We shall use

Theorem 1 to study the corresponding discrete wave-vector ~k in the computational regime where com-

ponents k‘ of the wave-vector k are of moderate size. More specifically we shall assume that, for mesh-

sizes h in the range of practical computation, the frequency is sufficiently moderate so that every com-

ponent of hk may be regarded as being small. Although dispersion analyses are often performed under

this kind of assumption their relevance to high frequency applications, where hk is finite, is limited.

Nevertheless, one often sees competing numerical schemes ranked on the basis of their order of accuracy

in this limit.
Thanks to Theorem 1, it suffices to consider the relative error qN for a general component hk‘ of

the wave-vector hk. Here, and in what follows, we shall omit the subscript ‘ from k‘ and ~k‘ in cases where

confusion is unlikely to arise. The next result gives the leading term in the asymptotic expansion of the

relative error qN in terms of hk in terms of the order N and the parameter c:

Theorem 2. Let N 2 N and suppose hk � 1, and define

QN ðsÞ ¼ sþ ihkðN þ 1Þ s2

2N þ 1

�
� 1

2N þ 3

�
: ð12Þ

1. If c 6¼ 0, then

qN � 1

2
ðhkÞ2Nþ2 N !

ð2N þ 1Þ!

� �2
QN cð�1ÞN
� �

ð13Þ

2. If c ¼ 0, then

qN � i

2

N !

ð2N þ 1Þ!

� �2 �ðhkÞ2Nþ3 Nþ1
2Nþ3

; N even;

ðhkÞ2Nþ1 2Nþ1
Nþ1

; N odd:

(
ð14Þ

Fig. 1 shows the real and imaginary components of the actual relative error in the case c ¼ 1
2
, along with

the theoretically predicted orders of decay. Corresponding results for the exceptional case c ¼ 0 are also

shown along with the theoretical predictions. For hk � 1, the relative error satisfies
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Fig. 1. Real and imaginary parts of relative error qN for the approximation of the physical mode eihk using methods of order

N ¼ 1; . . . ; 5 for c ¼ 0:5 and the exceptional case c ¼ 0. The asymptotic rates of convergence predicted in Theorem 2 are indicated.
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qN ¼ eihk � eih
~k

eihk
� ihðk � ~kÞ;

and hence, in the usual case where c 6¼ 0, Theorem 2 shows that the dispersion error is

Rðh~kÞ �RðhkÞ � ðhkÞ2Nþ3

2

N !

ð2N þ 1Þ!

� �2 N þ 1

2N þ 1
c2ð�1ÞN

�
� N þ 1

2N þ 3

�
;

while the dissipation error is

Iðh~kÞ � ðhkÞ2Nþ2

2

N !

ð2N þ 1Þ!

� �2
cð�1ÞN ;

thereby proving the conjectures of Hu and Atkins [14, Eqs. (41) and (42)]. In view of the fact that in

practical computations hk is finite, the information provided by Theorem 2 on the coefficient of the leading
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term in the error is of at least as much practical relevance as the order of approximation. The fact that the

leading coefficient decreases rapidly with increasing order N suggests (though of course does not prove) that

there may be advantages in keeping the mesh-size fixed and increasing the order N .

2.5. Large order N and large wave number kh

Motivated by the results of the previous section, we now investigate the behaviour of the relative error

qN in the case where the mesh-size h is fixed (so that the value of hk may be large) and the order N of the

method is increased. Fig. 2 shows the real and imaginary parts of the actual relative error qN as the order N
is increased, for a range of wave-numbers. The numerical results indicate that as the order N is increased,

the behaviour of the error passes through three different phases depending on the size of N relative to hk.
Firstly, in the pre-asymptotic regime where 2N þ 1 < hk � oðhkÞ1=3, the order is inadequate to resolve the

wave and the relative error tends to oscillate without decay as the order is increased. At the opposite ex-
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Fig. 2. Real and imaginary parts of relative error qN for the approximation of the physical mode eihk for hk ¼ 25, 50, 100, 200 and

c ¼ 0:5. Observe the super-exponential rate of decay once the order N exceeds the threshold 2N þ 1 > hk þ oðhkÞ1=3 as predicted in

Theorem 3(1).
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treme, if the order N is large compared with hk, i.e. 2N þ 1 > hk þ oðhkÞ1=3, then the error reduces at a

super-exponential rate. The transition zone between these two extremes occurs when the order N lies in the

relatively narrow range where hk � oðhkÞ1=3 < 2N þ 1 < hk þ oðhkÞ1=3. The following result shows that the
behaviour observed in the particular cases studied in Fig. 2 is true in general, and that in the transition

region, the error is of order unity but decreases at an algebraic rate N�1=3.

Theorem 3. Let N 2 N, and define

!N ðhkÞ ¼
ð1� cÞeiðhkþwN Þ þ ð�1ÞNþ1ð1þ cÞe�iðhkþwN Þ

ð1� cÞeiðhkþwN Þ þ ð�1ÞN ð1þ cÞe�iðhkþwN Þ
; ð15Þ

where wN ¼ arg 1F1ð�N ;�2N � 1;�ihkÞ. As the order N is increased relative to hk, the relative error qN

passes through three distinct phases:

1. if 2N þ 1 < hk � CðhkÞ1=3, then qN oscillates but does not decay as N is increased;

2. if hk � oðhkÞ1=3 < 2N þ 1 < hk þ oðhkÞ1=3, then qN decays algebraically at a rate OðN�1=3Þ,
3. if 2N þ 1 	 hk, then qN decays at a super-exponential rate as N ! 1,

qN � � !NðhkÞ
�

� ihk
2N þ 3

�
ehk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N þ 1Þð2N þ 3Þ

p
" #2Nþ2

: ð16Þ

Theorem 3 also gives sharp estimates for the thresholds on (a) the size of the order N , in terms of hk,
beyond which the wave is resolved and the error begins to decay, and in addition, (b) the value of h, in terms

of N and k, below which the wave is resolved. The main difference between the two approaches lies not in

the level of resources needed to resolve the wave, but in the rate at which the relative error decays once the
thresholds are reached. Decreasing h gives algebraic rate of decay, while increasing N is superior giving a

super-exponential rate of decay.
2.6. Exponential convergence on the envelope 2N þ 1 � hk

Although most analyses of dispersive behaviour are performed under the assumption that hk � 1,

many applications occur at high frequencies for which reducing the mesh-size to this extent is simply not a

viable practical proposition. In practice, computational simulations of high frequency phenomena are
generally performed on the envelope where hk is of moderate size, but by no means vanishingly small. In

other words, the range of frequencies studied in numerical simulations is often dictated by the smallest mesh-

size h that can be resolved by the available computational resources, rather than by the frequencies of

physical interest. As more powerful computational hardware becomes available, meaning a smaller mesh-

size h becomes feasible, the range of simulated frequencies is increased so that hk effectively remains

constant.

We have already seen that increasing the order N on a fixed mesh is more effective than reducing the

mesh-size h. The super-exponential rate of convergence in the resolved regime, where 2N þ 1 >
hk þ oðhkÞ1=3, means that it is inefficient to increase the order N much beyond this threshold. A more

practical alternative is to work on the envelope of the region where the super-exponential convergence sets

in. Thus, to resolve problems where hk 	 1, one could adopt a strategy whereby the order is chosen so that

2N þ 1 � jhk for some fixed constant j > 1.

The analysis of this type of procedure is rather more delicate than the situations considered earlier,

requiring estimates that are uniformly valid for large order N and large wave-number hk such that the ratio

of the two quantities remains constant (of order j). The following result shows that this strategy delivers an

exponential rate of convergence:
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Fig. 3. Real and imaginary parts of relative error qN with c ¼ 0:5 for various values of hk with the order N chosen so that

2N þ 1 ¼ jhk as described in Theorem 4. The results obtained with j ¼ 1:0 (shallowest), 1.2, 1.4, 1.8, 2.0, 2.5 and 3.0 (steepest) are

shown along with the theoretical prediction (17). Observe that an exponential rate of decay is obtained for j > 1 as predicted in

Theorem 4.
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Theorem 4. Let j > 1 be fixed. If N , hk ! 1 in a such a way that 2N þ 1 ¼ jhk, then qN decays at an

exponential rate as N ! 1,

qN � �e�bðNþ1=2Þ 1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

j2

r ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1

p�
� i
�
; ð17Þ

where b is a positive real number, defined in (32), which only depends on j.

Fig. 3 shows the actual relative error qN and the asymptotic results presented in Theorem 4. It is

observed that the asymptotic results provide an accurate indication of the actual behaviour even for

moderate values of N that could reasonably be used in practical computations.

2.7. Spurious mode

The nature of the spurious mode appearing on the right hand side of (10) is discussed at length in [14] to

which we have little to add. We point out that the mode corresponds to a wave travelling in the opposite

direction to the physical wave and, for non-negative c, is damped by a factor ð1� cÞ=ð1þ cÞ as it passes
through each element. This means that in the resolved regime, where the relative error qN is small, the mode

decays exponentially fast and has no impact in practical computation.
3. Analysis of remainder in Pad�e approximant

3.1. Pad�e approximant to the exponential

The study of Pad�e approximants of the exponential ez has enjoyed a long history going back to the

original work of Pad�e himself [22] where the following results, quoted from Varga [26], are obtained for

non-negative integers p and q:
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p=q½ �expðzÞ ¼
1F1ð�p;�p � q; zÞ

1F1ð�q;�p � q;�zÞ ð18Þ

with remainder given by

ez � p=q½ �expðzÞ ¼
ezzpþqþ1

R 1

0
e�tztpðt � 1Þqdt

ðp þ qÞ!1F1ð�q;�p� q;�zÞ : ð19Þ

Here, 1F1 denotes the confluent hypergeometric function defined by the series

1F1ða; b; zÞ ¼ 1þ a
b
zþ a

b
aþ 1

bþ 1

z2

2!
þ a
b
aþ 1

bþ 1

aþ 2

bþ 2

z3

3!
þ � � � ð20Þ

or, if we adopt Pochhammer�s notation ðaÞ0 ¼ 1 and ðaÞm ¼ aðaþ 1Þ � � � ðaþ m� 1Þ, then we have the al-
ternative form

1F1ða; b; zÞ ¼
X1
m¼0

ðaÞm
ðbÞm

zm

m!
:

The behaviour of the remainder in the limit z ! 0, and for the N � a=N½ �-Pad�e approximants (where

a ¼ 0; 1) as N ! 1 for fixed z, is well documented [19, p. 191]. However, we require expressions for the

remainder in the sub- and super-diagonal Pad�e approximants with purely imaginary argument that are

uniformly valid for large order N and large argument z. Our approach is based on expressing the remainder

in terms of Bessel functions and then using Langer�s formulae [9], which provide uniformly valid expansions
for Bessel functions of large order and argument. This enables us to deduce the leading terms in the re-

mainder, although actual bounds could be obtained if we were to use the uniform asymptotic expansions

with error bounds provided by Olver [21] in place of Langer�s formulae. A related approach was adopted by

Driver and Temme [7] in their analysis of the locations of the poles and zeros of the polynomials appearing

in the quotient (18) for the diagonal approximants (i.e. p ¼ q). There the remainder is expressed in terms of

Bessel functions and expansions in terms of Airy functions are employed.

We begin by establishing a link between the remainder in the Pad�e approximant and modified Bessel

functions of the second kind:
Lemma 1. Let N 2 N. Then,

ez � N½ þ 1=N �expðzÞ ¼ ez 1

(
þ ð�1ÞN

p

KNþ1=2ðz=2Þ þ KNþ3=2ðz=2Þ
INþ1=2ðz=2Þ � INþ3=2ðz=2Þ

)�1

; ð21Þ

where I and K denote modified Bessel functions [11].

Proof. From (19) with p ¼ N þ 1 and q ¼ N ,

ez � N½ þ 1=N �expðzÞ ¼
ezz2Nþ2

R 1

0
e�tztNþ1ðt � 1ÞN dt

ð2N þ 1Þ! 1F1ð�N ;�2N � 1;�zÞ :

The proof consists of rewriting the numerator and the denominator as follows:

(i) A simple change of variable gives

T1 ¼
Z 1

0

e�tztNþ1ðt � 1ÞN dt ¼ ð�1ÞN e�z=2

22Nþ2

Z 1

�1

esz=2ð1� sÞNþ1ð1þ sÞN ds:
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Using the identity (9.221) of [11], this may be rewritten as

ð�1ÞNz�N�3=2 e�z=2 N !ðN þ 1Þ!
ð2N þ 2Þ! M1=2;Nþ1ðzÞ;

where M1=2;Nþ1 denotes the Whittaker function of the first kind [11, (9.220)] with index 1=2. Whittaker
functions satisfy the following identity [24, (2.5.1)],

z�1=2M1=2;Nþ1ðzÞ ¼ M0;Nþ1=2ðzÞ �
1

2ð2N þ 3ÞM0;Nþ3=2ðzÞ;

where M0;l is the Whittaker function of the first kind of order l and index zero. The latter functions are

related to Bessel functions as follows [11, (9.235)2]

M0;lðzÞ ¼ Cð1þ lÞ22lz1=2Ilðz=2Þ;

where C is the gamma function [11]. This leads to the conclusion

M0;Nþ1=2ðzÞ �
1

2ð2N þ 3ÞM0;Nþ3=2ðzÞ ¼ CðN þ 3=2Þ22Nþ1z1=2 INþ1=2ðz=2Þ



� INþ3=2ðz=2Þ
�
:

In summary, after simplifying using the relation

22NCðN þ 3=2Þ ¼
ffiffiffi
p

p

2

ð2N þ 1Þ!
N !

;

we arrive at the conclusion

T1 ¼
ffiffiffi
p

p

2
ð�1ÞNz�N�1=2 e�z=2N ! INþ1=2ðz=2Þ



� INþ3=2ðz=2Þ

�
:

This completes the treatment of the numerator.

(ii) The denominator may be expressed in form

ð2N þ 1Þ! 1F1ð�N;�2N� 1;�zÞ ¼
Z 1

0

e�ttNþ1ðt� zÞN dt;

which is easily verified by using the binomial expansion and integrating. Then, with t ¼ sz, this may be

rewritten as

z2Nþ2

Z 1

0

e�szsNþ1ðs� 1ÞN ds ¼ z2Nþ2ðT1 þ T2Þ;

where T1 is defined above, and

T2 ¼
Z 1

1

e�szsNþ1ðs� 1ÞN ds:

Making the substitution s ¼ t þ 1 gives the alternative form

e�z

Z 1

0

e�tztN ðt þ 1ÞNþ1
dt

which in turn may be written in terms of a Whittaker function of the second kind using [11, (9.222)1],

N !e�z=2z�N�3=2W1=2;Nþ1ðzÞ:
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Identities (9.235)1 and (9.235)2 of [11] imply that

W1=2;Nþ1ðzÞ ¼
1

2
z1=2 W0;Nþ1=2ðzÞ



þ W0;Nþ3=2ðzÞ
�

and then identity [11, (9.235)2] gives

W1=2;Nþ1ðzÞ ¼
1

2

zffiffiffi
p

p KNþ1=2ðz=2Þ



þ KNþ3=2ðz=2Þ
�
:

Therefore,

T2 ¼
N !

2
ffiffiffi
p

p e�z=2z�N�1=2 KNþ1=2ðz=2Þ



þ KNþ3=2ðz=2Þ
�
:

Finally, combining these results gives

ez � N½ þ 1=N �expðzÞ ¼ ez 1

�
þ T2
T1

��1

and inserting the expressions for T1 and T2 gives the result claimed. �

The next result gives a closed form expression for the error in terms of first-kind Bessel functions when

the argument is purely imaginary.
Lemma 2. Let N 2 N and X 2 R. Then,

eiX � N½ þ 1=N �expðiXÞ ¼ 2eiX 1f þ iRN ðX=2Þg�1
; ð22Þ

where

RN ðxÞ ¼
YNþ1=2ðxÞ � iYNþ3=2ðxÞ
JNþ1=2ðxÞ � i JNþ3=2ðxÞ

: ð23Þ

Proof. First, recall that

Knþ1=2ðz=2Þ ¼ ð�1Þnþ1 p
2

Inþ1=2ðz=2Þ



� I�n�1=2ðz=2Þ
�
:

Inserting this expression into the term in parentheses on the right hand side of Eq. (21) and simplifying
shows that the term may be written as

1

2
1

�
þ I�N�1=2ðz=2Þ � INþ3=2ðz=2Þ

INþ1=2ðz=2Þ � INþ3=2ðz=2Þ

�
:

Then, inserting z ¼ iX into the (finite) series expansions for Inþ1=2, Jnþ1=2 and Ynþ1=2 (see (8.462), (8.467) and

(8.468) of [11]), and using the resulting relations between the Bessel functions leads to the conclusion that
the above expression coincides with
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1

2
1

�
þ i

YNþ1=2ðX=2Þ � iYNþ3=2ðX=2Þ
JNþ1=2ðX=2Þ � iJNþ3=2ðX=2Þ

�

and the result then follows from Lemma 1. �

3.2. Remainder for small argument X

The general result in Lemma 2 provides an easy passage to the following expression for the remainder at

small argument X:

Corollary 1. Let N 2 N and suppose X 2 R is small. Then

eiX � N½ þ 1=N �expðiXÞ ¼ �X2Nþ2 e
iX

2

N !

ð2N þ 1Þ!

� �2
1

�
� 2iXðN þ 1Þ
ð2N þ 1Þð2N þ 3Þ þ OðX2Þ

�
: ð24Þ
Proof. For small j, identity (8.440) of [11] gives

Jnþ1=2ðjÞ ¼
1

Cð3=2þ nÞ
j
2

� �nþ1=2

þ � � �

while combining identities ð8:465Þ1 and (8.440) of [11] gives

Ynþ1=2ðjÞ ¼ ð�1Þn�1J�n�1=2ðjÞ ¼
ð�1Þn�1

Cð1=2� nÞ
j
2

� ��n�1=2

þ � � �

where C denotes the gamma function. Simple substitution and the use of formulae (8.339) of [11] gives, after

some simplification,

1þ iRNðX=2Þ ¼
�4

X2Nþ2

ð2N þ 1Þ!
N !

� �2
1þ iX=ð4N þ 2Þ þ � � �
1� iX=ð4N þ 6Þ þ � � �

and the result then follows by inserting this expression into the error representation given in Lemma 2. �

3.3. Remainder for large order N and large argument X

We now consider the behaviour of the remainder for large order N and large argument X in detail. Three

distinct regimes are identified depending on the relative sizes of N and X. If N � X, then the remainder

tends to oscillate without decay, while if N 	 X, then the remainder decays at a super-exponential rate. The

following result gives a sharp identification of when the transition between these extremes occurs, and
provides a precise estimate for the nature of the transition.

Theorem 5. Suppose X 2 R and N 2 N. As the order N 	 1 is increased relative to the argument X, the error
EN ðXÞ ¼ eiX � N þ 1=N½ �eiX passes through three distinct phases:

1. if 2N þ 1 < X� CX1=3, then EN oscillates but does not decay as N is increased;

2. if X� oðX1=3Þ < 2N þ 1 < Xþ oðX1=3Þ, then EN decays algebraically at a rate OðN�1=3Þ. More precisely,

EN ðXÞ �
2eiX

1� i
ffiffiffi
3

p 1

(
þ i

ffiffiffi
3

p

1� i
ffiffiffi
3

p 35=6

p
Cð2=3Þ2 m

�1=3tm � iðmþ 1Þ�1=3tmþ1

m�1=3 � iðmþ 1Þ�1=3

)
; ð25Þ

where m ¼ N þ 1=2 and tm ¼ ð2=mÞ1=3ðm� X=2Þ;
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3. if 2N þ 1 > Xþ CX1=3, then EN decays as

EN ðXÞ � ieiX
m�1=2f ðwmÞm � iðmþ 1Þ�1=2f ðwmþ1Þmþ1

m�1=2f ðwmÞ�m � iðmþ 1Þ�1=2f ðwmþ1Þ�ðmþ1Þ ; ð26Þ

where m ¼ N þ 1=2, wm ¼ ð1� X2=4m2Þ1=2 and f : w 7!ewð1� wÞ1=2=ð1þ wÞ1=2.
Proof. Denote m ¼ N þ 1=2 and x ¼ X=2. The proof is divided into two cases depending on the relative sizes

of m and x.
Case 1: 2N þ 1 > X. Here, we have m > x and we may apply Langer�s formulas [9, Section 7.13.4 (34) and

(35)] to obtain

JmðxÞ ¼
1

p

ffiffiffiffiffiffi
z
wm

r
K1=3ðzÞ þ Oðm�4=3Þ;

YmðxÞ ¼ �
ffiffiffiffiffiffi
z
wm

r
I1=3ðzÞ
�

þ I�1=3ðzÞ


þ Oðm�4=3Þ;

ð27Þ

where w ¼ ð1� x2=m2Þ1=2 and z ¼ mðtanh�1 w� wÞ.
Case 1(a): X < 2N þ 1 < Xþ oðX1=3Þ. For N in this range, we find that w � ð2=mÞ1=2ðm� xÞ1=2 � 1 and so

z � ð1=3Þmw3 ¼ ð2=3Þt3=2 ¼ oð1Þ where t ¼ ð2=mÞ1=3ðm� xÞ. Inserting series expansions for the Bessel func-

tions I�1=3 and K1=3 with small argument and simplifying gives

JmðxÞ � 3�2=3Cð2=3Þ�1ð2=mÞ1=3 1
h

� 35=6Cð2=3Þ2t=2pþ Oðt3Þ
i
;

YmðxÞ � �3�1=6Cð2=3Þ�1ð2=mÞ1=3 1
h

þ 35=6Cð2=3Þ2t=2pþ Oðt3Þ
i
:

Substituting these expressions into the ratio RN given in (23) and using the fact that t ¼ oð1Þ, we arrive at

RN ðxÞ � �
ffiffiffi
3

p
1

"
þ 35=6

p
C

2

3

� �2 m�1=3tm � iðmþ 1Þ�1=3tmþ1

m�1=3 � iðmþ 1Þ�1=3

#
;

and then inserting this into (22) and simplifying gives the result claimed.

Case 1(b): 2N þ 1 > Xþ CX1=3. In this range, the value of z will be large. The Bessel functions appearing
in (27) may be written in terms of the Airy functions Ai and Bi as in (11.1.04) and (1.1.12) of [21] to

give

JmðxÞ ¼
ffiffiffiffiffiffiffi
3z
wmt

r
AiðtÞ þ Oðm�4=3Þ;

YmðxÞ ¼ �
ffiffiffiffiffiffiffi
3z
wmt

r
BiðtÞ þ Oðm�4=3Þ;

where z ¼ ð2=3Þt3=2. The behaviour of the Airy functions for large argument is given by (1.1.07) and (1.1.16)

of [21]:

AiðtÞ 
 e�z

2
ffiffiffi
p

p
t1=4

; BiðtÞ 
 ezffiffiffi
p

p
t1=4

:

Elementary manipulations give e�z ¼ f ðwÞ�m
, where f is the function defined in the statement of the result.

On inserting these expansions and simplifying, these formulae may be written in the alternative form
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JmðxÞ �
1ffiffiffiffiffiffiffiffiffiffiffi
2pwm

p f ðwÞm; YmðxÞ � �
ffiffiffiffiffiffiffiffi
2

pwm

r
f ðwÞ�m

;

where w ¼ ð1� x2=m2Þ1=2. Observe that f is monotonic decreasing on ð0; 1� from 1 to 0 and, since w > 0, the

ratio RN ðxÞ defined in (23) dictates the behaviour of the error (22) for large order N . The claim (26) then

follows on substituting the expressions for Jm and Ym and simplifying.

Case 2: 2N þ 1 < X. Here, m < x and we may apply Langer�s formulas [9, Section 7.13.4 (32) and (33)] to
obtain

JmðxÞ ¼
ffiffiffiffiffiffi
z
wm

r
J1=3ðzÞcosp=6
�

� Y1=3ðzÞsinp=6


þ Oðm�4=3Þ;

YmðxÞ ¼
ffiffiffiffiffiffi
z
wm

r
J1=3ðzÞsinp=6
�

þ Y1=3ðzÞcosp=6


þ Oðm�4=3Þ;

ð28Þ

where we now define w ¼ ðx2=m2 � 1Þ1=2 and z ¼ mðtan�1 w� wÞ.
Case 2(a): X� oðX1=3Þ < 2N þ 1 < X. For N in this range we find, as in Case 1(a), that

w � ð2=mÞ1=2ðx� mÞ1=2 � 1 and so z � ð1=3Þmw3 ¼ ð2=3Þs3=2 ¼ oð1Þ where s ¼ ð2=mÞ1=3ðx� mÞ ¼ �t. Ex-

panding the terms appearing in parentheses in (28) and simplifying gives

JmðxÞ � 3�2=3Cð2=3Þ�1ð2=mÞ1=3 1
h

þ 35=6Cð2=3Þ2s=2pþ Oðs3Þ
i
;

YmðxÞ � �3�1=6Cð2=3Þ�1ð2=mÞ1=3 1
h

� 35=6Cð2=3Þ2s=2pþ Oðs3Þ
i
;

where s is given above. If we substitute s ¼ �t, then these formulae are identical with those obtained in

Case 1(a) and the remainder of the argument then follows the one used in Case 1(a).

Case 2(b): 2N þ 1 < X� CX1=3. For N in this range, z will generally be large. The behaviour of the Bessel
functions of order 1=3 for large argument z is given in (8.440)1 and (8.440)2 of [11]:

J1=3ðzÞ 

ffiffiffiffiffi
2

pz

r
cos z
�

� 5

12
p

�
;

Y1=3ðzÞ 

ffiffiffiffiffi
2

pz

r
sin z
�

� 5

12
p

�
:

ð29Þ

Together, expressions (28) and (29) show that the Bessel functions JNþ1=2ðX=2Þ and YNþ1=2ðX=2Þ tend to

oscillate but not decay as the order N is increased in the range considered. Consequently, the expression for

EN ðXÞ appearing on the right hand side of (22) reflects this behaviour as N is increased. �

The next result provides further elaboration on the estimate (26) in two important limits as N ! 1:

Theorem 6. Let X 2 R and N 2 N. Let EN ðXÞ denote the error in the ½N þ 1=N �-Pad�e approximant of eiX.

1. If 2N þ 1 	 X, then EN ðXÞ decays at a super-exponential rate:

EN ðXÞ � �eiX
eX

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N þ 1Þð2N þ 3Þ

p
" #2Nþ2

1

�
� iX
2N þ 3

�
: ð30Þ

2. Let j > 1 be fixed. If N , X ! 1 in a such a way that 2N þ 1 ¼ jX, then EN ðXÞ decays at an exponential

rate:
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EN ðXÞ � �eiX�bðNþ1=2Þ 1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

j2

r ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1

p�
� i
�
; ð31Þ

where b is the positive real number (which depends on j) given by

b ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=j2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=j2

p � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

j2

r
: ð32Þ
Proof. Denote m ¼ N þ 1=2 and x ¼ X=2. By Theorem 5, we have

e�iXEN ðXÞ � i
m�1=2f m

m � iðmþ 1Þ�1=2f mþ1
mþ1

m�1=2f �m
m � iðmþ 1Þ�1=2f �ðmþ1Þ

mþ1

; ð33Þ

where fm ¼ f ðwmÞ and fmþ1 ¼ f ðwmþ1Þ, with wm ¼ ð1� x2=m2Þ1=2 and f : w 7!ewð1� wÞ1=2=ð1þ wÞ1=2.
Case 1: In this situation m 	 x so that wm � 1� x2=2m2. Hence fm � ex=2m and fmþ1 � ex=2ðmþ 1Þ.

Therefore, for m 	 x we have f mþ1
mþ1 f

�m
m � 1 and as a consequence we obtain

e�iXEN ðXÞ � �
ffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m

r
f m
m f

mþ1
mþ1

1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðmþ 1Þ

p
f mþ1
mþ1 f

�m
m

1þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ=m

p
f mþ1
mþ1 f �m

m

� �f mþ1
mþ1

ffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m

r
f m
m

"
� i 2

�
þ 1

m

�
f mþ1
mþ1

#
:

Inserting the approximations for fm and fmþ1 and simplifying gives

e�iXEN ðXÞ � � ex

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1Þ

p
" #2mþ1

1

(
� i 2

�
þ 1

m

�
1

�
þ 1

m

��m�1=2 ex
2ðmþ 1Þ

)

and then observing that

2

�
þ 1

m

�
1

�
þ 1

m

��m�1=2

! 2

e
as m ! 1;

we arrive at

e�iXEN ðXÞ � � ex

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1Þ

p
" #2mþ1

1

�
� ix
mþ 1

�

which, on replacing m and x, gives the result claimed.

Case 2: In this case, wm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=j2

p
and an easy computation then shows that

wmþ1 ¼ wm 1

�
þ 1

m
1

j2 � 1
þ Oðm�2Þ

�
:

Hence, using Taylor�s theorem and the fact that f 0ðwÞ ¼ w2f ðwÞ=ðw2 � 1Þ gives

fmþ1 ¼ 1

 
� 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

j2

r
þ Oðm�2Þ

!
fm: ð34Þ

Therefore, for large m, f m
mþ1 � f m

m e
�
ffiffiffiffiffiffiffiffiffiffiffi
1�1=j2

p
. With the aid of (33), we obtain
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e�iXEN ðXÞ � if 2m
m

m�1=2 � iðmþ 1Þ�1=2fmþ1e
�wm

m�1=2 � iðmþ 1Þ�1=2f �1
mþ1e

wm
:

By Eq. (34),

e�wmfmþ1 � e�wmfm 1



þ Oðm�1Þ
�
¼ Rm 1



þ Oðm�1Þ

�
;

where Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� wmÞ=ð1þ wmÞ

p
, and we deduce that for large m,

e�iXEN ðXÞ � if 2m
m

1� iRm

1� i=Rm
¼ if 2m

m ð1� wm þ iRmwmÞ:

By substituting wm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=j2

p
and simplifying further, we arrive at

e�iXEN ðXÞ � if 2m
m 1
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=j2

p �
1
�

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1

p �
:

Let b be defined as in the statement of the result, then

e�b ¼ e2wm
1� wm

1þ wm
¼ f 2

m ;

and using this to replace f 2
m in the previous estimate gives the result claimed. Finally, if wm 2 ð0; 1Þ, then

f ðwmÞ2 ¼ f 2
m < 1 and b is therefore positive. �
4. Analysis of an eigenvalue problem

Properties of the following eigenvalue problem will prove useful in the analysis of the dispersion error:

Find U 2 PN and k 2 C such that for given X 2 C,

U0; vð Þ þ 1

2
ð1� cÞ kUðð � 1Þ � Uð1ÞÞvð1Þ þ 1

2
ð1þ cÞ Uð



� 1Þ � k�1Uð1Þ

�
vð�1Þ

¼ 1

2
iXðU; vÞ 8v 2 PN : ð35Þ

As usual, the condition under which the eigenvalue problem will possess non-trivial solutions reduces to an

algebraic equation for the eigenvalue k, which we now proceed to identify.

4.1. Conditions for an eigenvalue

We begin by considering the exceptional cases where c ¼ �1. In what follows, it will be convenient to let
L denote the differential operator defined by Lv ¼ 1

2
iXvþ v0, and to use P ðp;qÞ

N to denote the Jacobi

polynomial of type ðp; qÞ and degree N (see Chapter 8, Section 9.6 of [11]).

Lemma 3. (i) Suppose c ¼ 1. If k ¼ kþN ¼ N=N þ 1½ �expðiXÞ, then Eq. (35) admits a non-trivial solution Uþ
N 2 PN

of the form

Uþ
N ðsÞ ¼

XN
m¼0

ðiXÞm ð2N þ 1� mÞ!
ð2N þ 1Þ! P ðN�m;N�mþ1Þ

m ðsÞ: ð36Þ
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(ii) Suppose c ¼ �1. If k ¼ k�N ¼ N þ 1=N½ �expðiXÞ, then Eq. (35) admits a non-trivial solution of the form

U�
N ðsÞ ¼

XN
m¼0

ðiXÞm ð2N þ 1� mÞ!
ð2N þ 1Þ! P ðN�mþ1;N�mÞ

m ðsÞ: ð37Þ
Proof. Consider the case c ¼ 1. Elementary manipulations and the use of the following identity, see (8.961)4
of [11],

d

ds
P ðN�m;N�mþ1Þ
m ðsÞ ¼ 1

2

ð2N � mþ 2Þ!
ð2N � mþ 1Þ! P

ðN�mþ1;N�mþ2Þ
m�1 ðsÞ;

reveal that

LUþ
N ¼ �ðiXÞNþ1

2

ðN þ 1Þ!
ð2N þ 1Þ! P

ð0;1Þ
N ðsÞ: ð38Þ

Hence, the orthogonality properties of Jacobi polynomials mean that Uþ
N satisfies Eq. (35) when v is of the

form ð1þ sÞw for some w 2 PN�1. It only remains to show that (35) is satisfied when v is a constant. Firstly,

since

P ðN�m;N�mþ1Þ
m ð1Þ ¼ N

m

� �
;

see (8.960)2 of [11], we have

Uþ
N ð1Þ ¼

XN
m¼0

ð�NÞm
ð�2N � 1Þm

ðiXÞm

m!
¼ 1F1ð�N ;�2N � 1; iXÞ: ð39Þ

Now, thanks to (7.391)4 of [11], ðP ð1;0Þ
N ; 1Þ ¼ 2=ðN þ 1Þ, and then by (8.961)1 of [11], P ð1;0Þ

N ð�sÞ ¼
ð�1ÞNPN ðsÞ, and we obtain ðP ð0;1Þ

N ; 1Þ ¼ ð�1ÞN2=ðN þ 1Þ. Therefore,

LUþ
N ; 1


 �
¼ N !

ð2N þ 1Þ! ð�iXÞNþ1 ð40Þ

and hence, using the fact that

P ðN�m;N�mþ1Þ
m ð�1Þ ¼ ð�1Þm N þ 1

m

� �
;

see (8.960)2 and (8.961)1 of [11], we obtain

LUþ
N ; 1


 �
þ Uþ

N ð�1Þ ¼
XNþ1

m¼0

ð�N � 1Þm
ð�2N � 1Þm

ð�iXÞm

m!
¼ 1F1ð�N � 1;�2N � 1;�iXÞ:

Consequently, Eq. (35) holds for constant v (and therefore all v 2 PN ) provided that

k ¼ kþN ¼ 1F1ð�N ;�2N � 1; iXÞ
1F1ð�N � 1;�2N � 1;�iXÞ ¼ N=N½ þ 1�expðiXÞ

as claimed. The proof in the case c ¼ �1 follows similar lines. In particular, we obtain

LU�
N ¼ �ðiXÞNþ1

2

ðN þ 1Þ!
ð2N þ 1Þ! P

ð1;0Þ
N ðsÞ ð41Þ
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which leads to

LU�
N ; 1


 �
¼ � N !

ð2N þ 1Þ! ðiXÞ
Nþ1

: ð42Þ

Manipulations similar to those used in the case c ¼ 1 give

U�
N ð�1Þ ¼ 1F1ð�N ;�2N � 1;�iXÞ ð43Þ

and

U�
N ð1Þ � LU�

N ; 1

 �

¼ 1F1ð�N � 1;�2N � 1; iXÞ

which lead to the condition that

k ¼ k�N ¼ 1F1ð�N � 1;�2N � 1; iXÞ
1F1ð�N ;�2N � 1;�iXÞ ¼ N½ þ 1=N �expðiXÞ

as claimed. �

The functions U�
N that arise in the case c ¼ �1 may be used to analyse the general case c 2 ½�1; 1�:

Lemma 4. Let c 2 ½�1; 1� and N 2 N. If k satisfies the algebraic equation

0 ¼ ð1� cÞ 1F1ð�N ;�2N � 1;�iXÞðk� k�N Þ þ ð�1ÞN ð1þ cÞ 1F1ð�N ;�2N � 1; iXÞ 1

kþN

�
� 1

k

�
; ð44Þ

then Eq. (35) admits a non-trivial solution U 2 spanfUþ
N ;U

�
Ng.

Proof. In view of Lemma 3, we may assume that c 2 ð�1; 1Þ. We seek a non-trivial solution UN 2 PN of the

form

UN ¼ c�U�
N þ cþUþ

N ;

where c� and cþ are non-zero scalars whose existence is to be determined. Thanks to (38) and (41), it

follows that LUN 2 spanfP ð1;0Þ
N ; P ð0;1Þ

N g. As a matter of fact, by writing

P ð1;0Þ
N ¼ N þ 2

2N þ 2
P ð1;1Þ
N þ 1

2
P ð1;1Þ
N�1

and

P ð0;1Þ
N ¼ N þ 2

2N þ 2
P ð1;1Þ
N � 1

2
P ð1;1Þ
N�1 ;

we conclude that

LUN 2 spanfP ð1;1Þ
N�1 ; P

ð1;1Þ
N g:

This implies that UN satisfies Eq. (35) for all v of the form ð1� s2Þw where w 2 PN�2, since Eq. (35) then

reduces to the identity

0 ¼
Z 1

�1

ð1� s2ÞwðsÞLUNðsÞds;
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which holds due to the standard orthogonality properties of Jacobi polynomials. It therefore suffices to

show there exist non-trivial scalars c� and cþ such that (35) is satisfied in the special cases v ¼ 1� s. In-
serting the expression for UN into (35) and choosing v ¼ 1� s shows that the existence of a non-trivial
solution is equivalent to the algebraic condition

RðU�; 1þ sÞ RðUþ; 1þ sÞ
RðU�; 1� sÞ RðUþ; 1� sÞ

����
���� ¼ 0;

where RðU; vÞ denotes the functional defined by the difference between the left and right hand sides of Eq.

(35). The off-diagonal entries in the determinant may be simplified using (38) and (41) to obtain

RðUþ; 1þ sÞ ¼ ð1� cÞ kUþ
N ð



� 1Þ � Uþ

N ð1Þ
�

and

RðU�; 1� sÞ ¼ ð1þ cÞ U�
N ð



� 1Þ � k�1U�

N ð1Þ
�
:

Expanding and simplifying the resulting determinant gives the algebraic condition

0 ¼ ðLU�
N ; 1þ sÞ ðLUþ

N ; 1� sÞ þ ð1� cÞ ðLUþ
N ; 1� sÞ kU�

N ð
�

� 1Þ � U�
N ð1Þ



þ ð1þ cÞ ðLU�

N ; 1þ sÞ Uþ
N ð

�
� 1Þ � k�1Uþ

N ð1Þ


: ð45Þ

Lemma 3 implies that

0 ¼ ðLU�
N ; 1þ sÞ þ 2 k�NU

�
N ð

�
� 1Þ � U�

N ð1Þ



and

0 ¼ ðLUþ
N ; 1� sÞ þ 2 Uþ

N ð
�

� 1Þ � 1

kþN
Uþ

N ð1Þ
�
:

If these identities are used to eliminate U�
N ð1Þ and Uþ

N ð�1Þ in (45), then on simplifying the resulting ex-

pression, we arrive at the condition

0 ¼ ð1� cÞU�
N ð�1ÞðLUþ

N ; 1� sÞðk� k�N Þ þ ð1þ cÞUþ
N ð1ÞðLU�

N ; 1þ sÞ 1

kþN

�
� 1

k

�
:

Finally, using (38) and (40), we obtain

ðLUþ
N ; 1þ sÞ ¼ 2ðLUþ

N ; 1Þ ¼
2N !

ð2N þ 1Þ! ð � iXÞNþ1

and similarly, using (41) and (42),

ðLU�
N ; 1� sÞ ¼ 2ðLU�

N ; 1Þ ¼ � 2N !

ð2N þ 1Þ! iXð ÞNþ1
:

With the aid of these expressions the condition becomes

0 ¼ ð1� cÞU�
N ð�1Þðk� k�N Þ þ ð�1ÞNð1þ cÞUþ

N ð1Þ
1

kþN

�
� 1

k

�
;

and the result then follows as claimed thanks to (39) and (43). �
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Lemma 4 establishes the condition (44) for the existence of an eigenvalue and thereby proves the con-

jecture of Hu and Atkins [14, Eq. (35)].

4.2. Properties of the eigenvalues

Let N 2 N and X 2 R. Denote HN ¼ 1F1ð�N ;�2N � 1;�iXÞ and define

kS ¼ ð�1ÞNþ1 1þ c
1� c

H �
N

HN
e�iX; c 6¼ 1: ð46Þ

The next result characterises the solutions of the algebraic eigenvalue equation as approximations to the
physical mode k � eiX and the spurious mode k � kS. The relative error in both approximations is shown to

have the same magnitude, which in turn is dictated by the remainder in the Pad�e approximants:

Theorem 7. If c 6¼ �1, then there are two distinct eigenvalues k � eiX and k � kS. Furthermore, the relative

error in these approximations is given by qN and �qN respectively, where

qN ¼ ð1� cÞHN e
iXEN þ ð�1ÞNþ1ð1þ cÞH �

N e
�iXE�

N

ð1� cÞHN eiX þ ð�1ÞN ð1þ cÞH �
N e

�iX
þ OðjEN j2Þ ð47Þ

and EN is the relative error in the Pad�e approximant,

EN ¼ eiX � N þ 1=N½ �eiX
eiX

: ð48Þ

Proof. Let EN be defined as above, then

k�N ¼ N½ þ 1=N �eiX ¼ eiXð1� EN Þ

and

1

kþN
¼ N½ þ 1=N �e�iX ¼ e�iXð1� E�

N Þ:

Inserting these expressions into condition (44) gives

0 ¼ ð1� cÞHN ðk� eiX þ eiXEN Þ þ ð�1ÞN ð1þ cÞH �
N ðk� eiX � kE�

N Þ
1

keiX
;

or, on rearranging,

eiX � k
eiX

ð1
�

� cÞHN e
iX þ ð � 1ÞN ð1þ cÞH �

Nk
�1


¼ ð1� cÞHN e

iXEN þ ð�1ÞNþ1ð1þ cÞH �
N e

�iXE�
N : ð49Þ

If EN � 0, then Eq. (49) has roots at k � eiX and k � kS (provided c 6¼ 1), which depend continuously on

EN . As EN ! 0, passing along the branch corresponding to eiX, the second term in parentheses on the left

hand side of (49) tends to

ð1� cÞHN e
iX þ ð�1ÞN ð1þ cÞH �

N e
�iX;

and Eq. (49) then implies that the relative error in the approximation of this zero by eiX is given by qN .
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The left hand side of (49) may be rewritten as

k� kS
k

ð1
�

� cÞHN e
iX þ ð � 1ÞN ð1þ cÞH �

N e
�iX þ Oðk� kSÞ



:

As EN ! 0, passing now along the branch corresponding to kS, this expression approaches

k� kS
kS

ð1
�

� cÞHN e
iX þ ð � 1ÞN ð1þ cÞH �

N e
�iX


;

and it follows that the relative error in the approximation of the second zero by kS is given by �qN . �
5. Proofs of main results

Finally, we present the proofs of the results described in Section 2.3.
5.1. Proof of Theorem 1

Let x and k 2 Rd satisfy the hypothesis. Consider an arbitrary element K ¼
Qd

‘¼1ða‘; b‘Þ. For each

‘ ¼ 1; . . . ; d, we begin by defining a function uDG‘ by the rule uDGðx‘Þ ¼ UðsÞ, s ¼ ð2x‘ � a‘ � b‘Þ=h, where U
is a non-trivial solution of the eigenvalue problem (35) with X ¼ hk‘ and k‘ chosen according to Theorem 7.

Performing the change of variable indicated above, we arrive at the conclusion that uDG‘ 2 PN ða‘; b‘Þ
satisfies

ðouDG‘ ; vÞ‘ þ
1

2
ð1� cÞ k‘uDG‘ ðaþ‘ Þ



� uDG‘ ðb�‘ Þ

�
vðb�‘ Þ þ

1

2
ð1þ cÞ uDG‘ ðaþ‘ Þ



� k�1

‘ uDG‘ ðb�‘ Þ
�
vðaþ‘ Þ

¼ ik‘ðuDG‘ ; vÞ‘ ð50Þ

for all v 2 PN , where ð�; �Þ‘ denotes the L2-inner product on ða‘; b‘Þ. The restriction of the function uDG to

element K is defined to be

uDGK ðx; tÞ ¼ ce�ixt
Yd
‘¼1

uDG‘ ðx‘Þ:

The value of the function uDG on remaining elements is then defined so that Eq. (9) holds automatically.

Specifically, the discrete wave-vector is defined by eih
~k‘ ¼ k‘ and to obtain uDG on any remaining element K 0,

we use (9) with x 2 K and hm chosen to be the position vector of the centroid of K 0 relative to the centroid

of K. Obviously uDGK 0 2 PN . Moreover, choosing x 2 K, s ¼ 0 and m ¼ me‘ in (9) gives

uDGðxþ mhe‘; tÞ ¼ eihm
~k‘uDGðx; tÞ ¼ km‘ u

DGðx; tÞ; m 2 Z

and then inserting the expression for uDG and simplifying, we obtain

uDG‘ ðx‘ þ mhÞ ¼ km‘ u
DG
‘ ðx‘Þ; x‘ 2 ða‘; b‘Þ:

By first selecting x‘ ¼ b�‘ and m ¼ �1, and then x‘ ¼ aþ‘ and m ¼ 1, we find

uDG‘ ðb�‘ Þ ¼ k‘uDG‘ ða�‘ Þ;

and hence, with the aid of (50), we arrive at the conclusion
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ðouDG‘ ; vÞ‘ þ
1

2
ð1� cÞ uDG‘ ðbþ‘ Þ



� uDG‘ ðb�‘ Þ

�
vðb�‘ Þ þ

1

2
ð1þ cÞ uDG‘ ðaþ‘ Þ



� uDG‘ ða�‘ Þ

�
vðaþ‘ Þ

¼ ik‘ðuDG‘ ; vÞ‘ ð51Þ

for all v 2 PN .

It remains to show that uDG satisfies (7) or equivalently (8). Thanks to property (9), it is sufficient to

prove (8) holds on the particular element K. Let a general test function v be expressed in the formQd
‘¼1 v‘ðx‘Þ where v‘ 2 PN . Inserting these expressions into the statement (8), simplifying using (6) and

cancelling a factor ce�ixt, shows that (8) is equivalent to the following condition:

ix
Yd
‘¼1

ðv‘; uDG‘ Þ‘ ¼
Xd
m¼1

Y
‘6¼m

ðv‘; uDG‘ Þ‘ ðvm; amomuDGm Þm
n

þ K�
c ðemÞ uDGm ðbþmÞ



� uDGm ðb�mÞ

�
vmðb�mÞ

þ Kþ
c ðemÞ uDGm ðaþmÞ



� uDGm ða�mÞ

�
vmðaþmÞ

o
;

where em is the mth unit vector. The assumption am P 0 implies that K�
c ðemÞ ¼ 1

2
ð1� cÞam, which in turn

shows that the expression in parentheses reduces to am multiplied by the left hand side of (51). Condition (8)
is therefore equivalent to

ix
Yd
‘¼1

ðv‘; uDG‘ Þ‘ ¼ ia � k
Yd
‘¼1

ðv‘; uDG‘ Þ‘; 8v‘ 2 PN

or equally well, x ¼ a � k. The statements concerning the discrete wave-vector follow at once from

Theorem 7.

5.2. Proof of Theorem 2

By Lemma 1, the relative error in the Pad�e approximant is given by

EN ¼ � 1

2
X2Nþ2 N !

ð2N þ 1Þ!

� �2
1

�
� 2iXðN þ 1Þ
ð2N þ 1Þð2N þ 3Þ þ OðX2Þ

�
:

Furthermore, since

HN ¼ 1F1ð�N ;�2N � 1;�iXÞ ¼ 1� N
2N þ 1

iXþ � � � ;

we have

HN e
iX ¼ 1þ N þ 1

2N þ 1
iXþ � � �

Inserting these expressions into (47) gives

qN ¼ � 1

2
X2Nþ2 N !

ð2N þ 1Þ!

� �2 ð2N þ 1ÞqNþ1 þ qNðN þ 1ÞiX
ð2N þ 1ÞqN þ qNþ1ðN þ 1ÞiX

�
� 2iXðN þ 1Þ
ð2N þ 1Þð2N þ 3Þ þ � � �

�
;

where

qN ¼ ð1� cÞ þ ð�1ÞN ð1þ cÞ:
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Case 1: Suppose c 6¼ 0. It is then straightforward to verify that the term in the second set of parentheses

simplifies to QN ðcð�1ÞN Þ, giving the result claimed. Case 2: If c ¼ 0, then qNþ1 vanishes for even N , and the

expression simplifies to (14)1. Equally well, if N is odd, then qN vanishes, and the expression reduces to (14)2
in this case.

5.3. Proofs of Theorems 3 and 4

The first two parts of Theorem 3 are restatements of the first two parts of Theorem 5. The final part of

Theorem 3 follows by inserting the estimates from the first part of Theorem 6 into the expression (47) and

simplifying. The proof of Theorem 4 follows in the same way, using instead the second part of Theorem 6.
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